Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Language
Year range
1.
Mycobiology ; : 114-118, 2017.
Article in English | WPRIM | ID: wpr-729305

ABSTRACT

In September 2013 and 2014, a significant number of kenaf plants showing symptoms of leaf spots with approximately 50% incidence were found in experimental plots in Iksan and Namwon, Korea. Leaf spots were circular to irregular, more or less vein-limited, reaching to 10 mm in diameter. The spots were initially uniformly brown to reddish brown, turning pale brown with a purplish margin and showing grayish patches on the lesion due to heavy fructification. The causative agent of the leaf spot disease was identified as Cercospora malayensis. The pathogenicity test was conducted with similar results, which fulfilled Koch's postulates. This is the first report of C. malayensis infection of kenaf in Korea.


Subject(s)
Hibiscus , Incidence , Korea , Virulence
2.
Mycobiology ; : 58-62, 2016.
Article in English | WPRIM | ID: wpr-729452

ABSTRACT

Extensive disease surveys performed during the summers of 2013 and 2014 in Schisandra chinensis orchards resulted in the finding of a Septobasidium sp. associated with felt disease. The fungus was characterized to be symbiotic with a scale insect (Pseudaulacaspis cockerelli). Morphological and molecular characteristics of the Septobasidium isolates were investigated. The isolates were morphologically and phylogenetically close to S. bogoriense. We tentatively describe this isolate as a Septobasidium sp., mainly because of the limited amount of information available on the internal transcribed spacer region of the ribosomal DNA of Septobasidium spp.


Subject(s)
DNA, Ribosomal , Fungi , Hemiptera , Schisandra
3.
Mycobiology ; : 174-178, 2015.
Article in English | WPRIM | ID: wpr-729648

ABSTRACT

Fusarium wilt of zucchini in Jeonju, Korea, was first noticed in May 2013. Symptoms included wilting of the foliage, drying and withering of older leaves, and stunting of plants. Infected plants eventually died during growth. Based on morphological characteristics and phylogenetic analyses of the molecular markers (internal transcribed spacer rDNA and translation elongation factor 1alpha), the fungus was identified as Fusarium oxysporum. Pathogenicity of a representative isolate was demonstrated via artificial inoculation, and it satisfied Koch's postulates. To our knowledge, this is the first report of F. oxysporum causing wilt of zucchini in Korea.


Subject(s)
DNA, Ribosomal , Fungi , Fusarium , Korea , Peptide Elongation Factors , Virulence
4.
Mycobiology ; : 310-315, 2010.
Article in English | WPRIM | ID: wpr-729909

ABSTRACT

Agrocybe aegerita is an important mushroom cultivated in Korea, with good feel and a peculiar fragrance. A. aegerita can be cultivated throughout the year using culture bottles but is more susceptible to contamination than other mushrooms. Twenty-two pathogens were isolated from the fruiting bodies and compost of A. aegerita, and seven isolates were isolated from Pleurotus ostreatus to compare with the A. aegerita isolates, collected from Gimje, Iksan, Gunsan of Chonbuk, and Chilgok of Gyeongbuk Province in 2009. These isolates were identified based on morphological and molecular characteristics. Of the 29 isolates, 26 were identified as Trichoderma spp. and the remaining three were Aspergillus spp., Mucor spp., and Penicillium spp. A phylogenetic analysis revealed that the 26 isolates of Trichoderma were divided into four taxa, namely T. harzianum, T. pleuroticola, T. longibrachiatum, and T. atroviride. Among the Trichoderma spp., 16 isolates (55.2%) were identified as T. harzianum, six as T. pleuroticola (20.7%), two as T. longibrachiatum, and the remaining two were T. atroviride.


Subject(s)
Agaricales , Agrocybe , Aspergillus , Fruit , Korea , Mucor , Penicillium , Pleurotus , Soil , Trichoderma
5.
Mycobiology ; : 166-170, 2010.
Article in English | WPRIM | ID: wpr-729471

ABSTRACT

Gummy stem blight is a major foliar disease of muskmelon (Cucumis melo L.). In this study, morphological characteristics and rDNA internal transcribed spacer (ITS) sequences were analyzed to identify the causal organism of this disease. Morphological examination of the Jeonbuk isolate revealed that the percentage of monoseptal conidia ranged from 0% to 10%, and the average length x width of the conidia was 70 (+/- 0.96) x 32.0 (+/- 0.15) microm on potato dextrose agar. The BLAST analysis showed nucleotide gaps of 1/494, 2/492, and 1/478 with identities of 485/492 (98%), 492/494 (99%), 491/494 (99%), and 476/478 (99%). The similarity in sequence identity between the rDNA ITS region of the Jeonbuk isolate and other Didymella bryoniae from BLAST searches of GenBank was 100% and was 95.0% within the group. Nucleotide sequences of the rDNA ITS region from pure culture ranged from 98.2% to 99.8%. Phylogenetic analysis with related species of D. bryoniae revealed that D. bryoniae is a monophyletic group distinguishable from other Didymella spp., including Ascochyta pinodes, Mycosphaerella pinodes, M. zeae-maydis, D. pinodes, D. applanata, D. exigua, D. rabiei, D. lentis, D. fabae, and D. vitalbina. Phylogenetic analysis, based on rDNA ITS sequence, clearly distinguished D. bryoniae and Didymella spp. from the 10 other species studied. This study identified the Jeonbuk isolate to be D. bryoniae.


Subject(s)
Agar , Base Sequence , Bryonia , Databases, Nucleic Acid , DNA, Ribosomal , Glucose , Solanum tuberosum , Spores, Fungal
SELECTION OF CITATIONS
SEARCH DETAIL